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Summary: Heteroarene-substituted vinyl- and allyl-silanes were obtained in 

good yields by the cross-coupling reaction of either heteroaryl Grignard 

reagents with halovinyl- and haloallyl-silanes or, alternatively, silyl- and 

silylmethyl-substituted vinylmetallic reagents with heteroaryl halides in the 

presence of PdC12(dppb) as a catalyst. 

Although the importance of vinylsilanes and allylsilanes as versatile 

precursors in organic synthesis has been well recongnized in recent years,' 

little is known about the heteroarene-substituted vinyl- and allyl-silanes 

for lack of general synthetic methods. As part of our study on the transition 

metal complex catalyzed selective introduction of organic groups onto hetero- 

arene nuclei, 
2 
we report here a general and practical method for the prepara- 

tion of such a sort of compounds via palladium-phosphine complex catalyzed 

cross-coupling reaction of either heteroaryl-metallic reagents with halovinyl- 

and haloallyl-silanes (route A) or silyl- and silylmethyl-substituted vinyl- 

metallic reagents with heterocyclic halides (route B) (see Scheme 1). 

Scheme 1 

Route A Route B 

R = Me3Si- or Me3SiCH2- 

m = MgBr or ZnCl 

a3 
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Table 1. Palladium-Complex Catalyzed Synthesis of Heteroarene Substituted Vinyl- and 

Allyl-rilanes' 

entry organometallics halide conditionsb product yield (%I' 

1 
MgBr 

2 
MgBr 

(x I\ f 
N MgBr 
Me 

-MgBr' 
Me 

SiMe3 

5 
A / MgBr 

3 

SiMe3 f 

A / ZnCl 
4 

8 4 

9 

SiMe3 

A / Br 
1 

ether, 2 h 

ether, 1 h 

2 

1 THF, 1 h 

1 THF, 1 h 

THF, 19 h 

THF, 17 h 10 72 

THF, 2 hi 
Br 

THF, 2 h 

THF, 2 h 

Br 

81d 

78e 

74 

8 

87 

SiMe3 609 

q, 77 

11 SiMe3 

12 SiMe3 

7 

70 

66 
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Table 1 (continued). 

a Molar ratio: organometallics / halide / PdClZ(dppb) = 1.2-1.8 / 1 / 0.005-0.01. dppb = 

Ph2P(CH2)4PPh2. 
b 

All reactions were carried out under solvent reflux conditions. ' Yields 

were determined by GLC, unless otherwise stated. ' Isolated yield. e Double bond isomers, 

Z-thienyl_C(CH3)=CHSiMe3, were formed in up to 9% yield. f Prepared by treatment of the 

lithium reagent with MgBr8 or ZnC18. g 3,3'-Bithienyl was also formed in 14% yield. ' Used 

in fourfold excess. ' At r.t. for 1 h and then reflux for 1 h. 

The representative results are listed in Table 1. Via route A, a-bromo- 

vinyltrimethylsilane 1 3 

4 
was allowed to react with 2-thienyl, 1-methyl-2- 

pyrrolyl, and 1-methyl-2-indoly14 Grignard reagents in the presence of a 

catalytic amount of PdC12(dppb), dppb = Ph2P(CH2)4PPh2, to afford the corres- 

ponding silyl-substituted vinylheterocycles 6, 8, and 9, respectively, in 

good yields (entries 1, 3, and 41. 

propene 25 

Similarly, 2-bromo-3-(trimethylsilyl)- 

reacted with 2-thienylmagnesium bromide to give the coupling 

product 7, along with a small amount of double bond isomer (entry 2). 

In the alternative route B, 

vinylmagnesium bromide 33 

3-bromothiophene was coupled with a-silyl- 

or -zinc chloride 4. 
6 

The zinc reagent afforded 

more satisfactory results with respect to the selectivity and product yield 

(entry 6) than the Grignard reagent 3, with which a considerable amount of 

3,3'-bithienyl, homocoupling product of 3, was formed as a by-product (entry 

51. Also, in the coupling with 2-bromopyridine, the vinylic zinc reagent 4 

gave the corresponding silyl-substituted vinylpyridine 12 effectively (entry 

81, whereas the vinylic Grignard reagent 3 afforded an unexpected result: 

the use of about fourfold excess of 3 gave rise to the exclusive formation 

of 2-(3-trimethylsilyl-3-butenyl)pyridine 11, which probably arose from 

conjugate addition of 3 to the initially formed coupling product 12 followed 

by cleavage of the silyl group a to the pyridine ring7 during work-up. 
8 

Coupling of the homologous vinylzinc reagent 5 with 2-bromothiophene afforded 

7 very cleanly (entry 91, not contaminated with the double bond isomer (cf., 

entry 2). 

Although route B gave slightly lower yields of the coupling products than 

route A, it still seems to have more synthetically useful features: it can 

introduce (1) silylfunctionalyzed vinyl groups regioselectively even onto 

heteroarenes whose metallic reagents are relatively unstable' (entry 61, and 

(2) allylsilane moieties onto heteroarenes with no contamination of isomeriza- 

tion product (entry 9). 

We have presented here the first, efficient method for the preparation 

of otherwise hardly accessible heteroarene substituted vinyl- and allyl- 

silanes. 

A typical procedure is as follows. To a mixture of 1 (533 mg; 3.0 mmol), 

PdC12(dppb) (10 mg; 0.016 mmol), and dry ether (15 ml) was added an ethereal 

solution of 2-thienylmagnesium bromide (2.8 ml; 3.8 mmol) at 0°C under an 

argon atmosphere. The mixture was refluxed for 2 h, hydrolyzed, and extracted 
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with ether three times. After drying over MgS04, the solvent was removed. 

Bulb-to-bulb distillation of the residue gave 441 mg (81% yield) of 6 (97% 

purity by GLC): b.p. llO-12O"C/3 mmHg (bath temperature); ni" 1.5342; 'H NMR 

(CC14, cyclohexane) 6 0.24 (s, 9H), 5.41 (d, J = 2 Hz, lH), 5.94 (d, J = 2 

Hz, lH), 6.81-6.97 (m, 2H), 6.97-7.17 (m, 1H). Anal Calcd for C9H14SSi: C, 

59.28; H, 7.74. Found: C, 58.99; H, 7.71%.l" 
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